
Karl Austin
 i

Developing modular software
with reference to

web hosting automation

BSc (Hons) Software Engineering

Karl Peter Hill Austin

Karl Austin
 ii

Acknowledgements

I would like to thank Mike Parr, for help and advice throughout the project when
I’ve needed it.

I would also like to thank KDA Web Services Ltd. For the use of a Linux server
connected to the Internet for using as a remote client server in the system and
for providing an account on another Linux server from which the control software
could be ran.

Thanks are also due to Positive Software for answering questions on how their
system works and to cPanel Inc. for doing the same.

Thank you to many customers of KDA Web Services Ltd. For helping with my
research and for giving their valuable time and opinions on what they think of
HSphere and of CPanel.

Karl Austin
 iii

Abstract

The aim of this project was to develop ideas for creating modular and scalable
software for applications relating to web hosting automation software. A small
scale proof of concept deliverable demonstrating these ideas was produced,
implementing the design decisions taken. The proof demonstrates the use of
Object Oriented design, utilising the Factory Pattern in its implementation and
also utilising XML and XSLT to help with the configuration and to aid the
platform independence goals of the project.

Some problems were encountered along the way, but these tended to be quite
trivial such as tabs in a configuration file stopping it being parsed by Bind and
other similar issues.

The goals of the project have been met, the ideas developed are workable in a
real world situation and could be used to develop a highly modular hosting
automation system, or general client-server control system.

Keywords

internet hosting client-server modular

Karl Austin
 iv

Contents

1. Investigation and analysis ………………………………………. 1
1.1 Introduction ……………………………………………….. 1
1.1.1 Project Specification and mark weighting ……... 2
1.2 Requirements to host a web site ……………………….. 4
1.2.1 DNS Server ……………………………………….. 4
1.2.2 Web Server ……………………………………….. 6
1.2.3 Server Hardware …………………………………. 6
1.2.4 Server Operating System ……………………….. 7
1.3 Evaluation of existing solutions to the problem ………. 8
1.3.1 HSphere from Positive Software Corporation … 9
1.3.2 CPanel6 from cPanel Inc. ……………………….. 10
1.3.3 How They Compare ……………………………… 11
1.4 Drawbacks of the existing approaches ………………… 14
1.4.1 CPanel …………………………………………….. 14
1.4.2 HSphere …………………………………………… 15
1.5 Tools for implementation ………………………………… 17
1.6 My approach ……………………………………………… 20

2 System Design ……………………………………………….. 21
2.1 Design notations …………………………………………. 21
2.1.1 UML ……………………………………………….. 21
2.1.2 SSADM …………………………………………… 23
2.1.3 Conclusions ………………………………………. 25
2.2 Design and development methodologies ……………… 26
2.2.1 Procedural design ……………………………….. 26
2.2.2 Object Oriented design ………………………….. 27
2.2.3 Conclusions ………………………………………. 29
2.2.4 Design Patterns ………………………………….. 30
2.3 The Design ……………………………………………….. 31

3 System Development ……………………………………….. 35
3.1 Implementation considerations ………………………… 35
3.2 Communication protocols ………………………………. 37
3.3 Data storage ……………………………………………… 39
3.3.1 Configuration data ………………………………. 39
3.3.2 General system data ……………………………. 41
3.4 Turning data in to configurations ………………………. 43
3.4.1 Enter XSLT ………………………………………. 43
3.5 Verification and validation ……………………………… 45

4. The deliverable ……………………………………………… 47

Karl Austin
 v

5. Critical evaluation ………………………………………… 49
5.1 The process …………………………………………. 49
5.2 The deliverable ……………………………………… 50
5.3 Areas for future development ……………………… 51
5.4 Conclusion …………………………………………… 52

References ………………………………………………………………. 53

Bibliography ……………………………………………………………... 54

Appendix A – Project Specification ……………………………………. 55

Appendix B – User Interface Screen-shots …………………………… 58

Appendix C – General System Data ………………………………….. 61

Appendix D – XSLT + Output ………………………………………….. 63

Appendix E – Application Code ……………………………………….. 72

Karl Austin
 - 1 -

1. Investigation and analysis

1.1 Introduction

Since 1996 the Internet and more specifically the World Wide Web (WWW) have
taken the world by storm. What once used to be the domain of scientists and
academics is now accessed by millions of people from all walks of life. This
huge increase in popularity has led to a large increase in the number of web
sites online, which currently stands at over 39 million (Netcraft, 2003), up from
just under75,000 in January 1996 (Netcraft, 1996). All of these web sites need a
place to be stored on the Internet, usually on the web servers of many
commercial web hosting providers.

The problem with such a large number of web sites is how to provision them and
how to manage them in an efficient and user friendly manner. Not so many
years ago, web sites were setup by hand, from the command line of a server, or
using a collection of shell scripts written over a period of time by the system’s
admin, again, run from the command line. In recent times, it has become
commonplace for web sites to be provisioned and managed by automated
software systems, referred to as control panels. These systems usually provide
an administrative and customer interface to control both the provisioning of user
accounts and the customer management of a site and related items such as
email.

As hosting providers come to rely ever more on automated control systems to
take care of day-to-day tasks it is important that the software be able to grow
with the company and meet the needs of their customers. If a company were to
find that their control system cannot scale with their growth or cannot keep up
with the latest technology then it could prove costly in terms of new and existing
business losses. If the software a company choose cannot scale any further
then they have no choice but to go through the expensive and time consuming

Karl Austin
 - 2 -

task of moving between control systems – which is not adequately planned and
prepared for can result in many problems for the company and customers alike,
with the ultimate consequence being web site unavailability. So as you can see
it is important for a company to find software that will grow with their business
and be able to keep pace with the market in terms of new features that
customers want and expect.

What I will be looking at in this report and demonstrating via a proof of concept
are the tools that can be employed by web hosting companies to provision and
manage web sites and looking at ways they can be improved from the
perspective of scalability and expandability - Two key issues for any large
provider of web hosting. I will be focusing my research on two of the most
popular tools on the market for this task, HSphere from Positive Software and
CPanel6 from cPanel Inc. The main focus of my research and development will
be in to ways that modularity can be built into the software, to allow for easy
addition of new features as well as the ability to expand existing features without
having to have access to the existing source code, e.g. A third party developer
could add a module to work with the Zeus Web Server, without having to edit
any existing code in the system.

1.1.1. Project Specification and mark weighting

After reviewing the project, I believe it was important to modify the project
specification to give more emphasis in to the research aspect of the project
rather than to the deliverable, as the deliverable will only be a proof of concept
(as outlined in the original specification) and the original specification placed an
emphasis on the modularity of the system, but did not allocate enough time in to
researching ways of achieving the aim and allocated more time to the
deliverable than needed. Also after taking a brief look at two of the most popular
solutions in the market place, I decided that more time should be allocated to
understanding how they work so that I can better evaluate them and learn from

Karl Austin
 - 3 -

how they work. To reflect the shift in focus, the marks breakdown has been
adjusted accordingly as it placed too much emphasis on the deliverable when it
was only ever planned to be a proof of concept. The revised specification is
attached as Appendix A.

Karl Austin
 - 4 -

1.2. Requirements to host a web site

The basic requirements to get any web site up and running with a domain name
are:

A Domain Name
 Server Hardware and Software
 An Internet Connection
 Web Server Software
 DNS Server Software

1.2.1 DNS Server

For the purposes of demonstrating the modularity and expandability of the
design/coding ideas and techniques I shall demonstrate the use of two DNS
servers, specifically BIND and DJBDNS, two competing open source products.
The diagram below shows what happens when a user types a domain name in
to their browser and the role DNS plays. In the case of the system I will be
developing, the DNS server for the system fits in to the box, “Query each of the
nameservers until you get an answer”.

Karl Austin
 - 5 -

Figure 1: How DNS Works (ZoneEdit.Com, 2002)

Now that the users browser has the IP address of the site, it will now send a
request to the site, along with the host header (the domain name) and the server
will start serving the request for the page and associated images etc. to the
users browser if it has been configured to provide service for the domain name
or IP address the browser has asked for.

Karl Austin
 - 6 -

1.2.2. Web Server

It is the job of the web server software to listen for requests made for web pages
on IP addresses and domains that it is configured to listen for. Once it receives
a request it then finds the appropriate page/file, performs any processing on it
that it needs e.g. PHP, Perl, SSI and then sends the final output to the users
web browser.

As discussed in the project specification, I will be using the open source Apache
from the Apache Software Foundation as the web server for the project as it
provides a stable and well tested, 66% of active web sites use Apache (Netcraft
2003), platform on which to develop a suitable control system.

1.2.3. Server Hardware

All software that will be used is readily available on a number of hardware
platforms such as:

Intel x86 (Intel, AMD, Cyrix)
 Sun Sparc
 IBM
 SGI
 HP

For the proof of concept I shall be using the Intel x86 architecture, as the
hardware platform is stable and well tested, it is the primary platform used by the
vast majority of small-medium sized companies providing shared hosting
solutions. KDA Web Services Ltd. has kindly donated a server and internet
connectivity for the Web and DNS servers to run from and a shared hosting
account to run the control software.

Karl Austin
 - 7 -

Using the Intel x86 architecture means that if any problems are encountered
when installing software then there is more chance of finding a solution quickly
due to the fact that the x86 architecture is one of the most popular and widely
used and tested for running small-medium servers and compiling software on.

1.2.4. Server Operating System

Both the control and the remote servers will run RedHat Linux 7.3 for the
purpose of the proof of concept as it is a widely tested and supported distribution
on the Linux operating system and is also the operating system used on the
servers that CPanel and HSphere were evaluated on. Linux is an open source
operating system used on a large number of web servers, mainly due to its free,
open-source nature, which means anyone can use it and even alter it, if they
find a bug, then they can fix it – Another benefit of the open source nature is that
anyone can review the code, and lots of people do, this large scale peer review
can help reduce security holes and other potential problems, thus leading to a
more robust system.

Karl Austin
 - 8 -

1.3. Evaluation of existing solutions to the problem

As discussed earlier, I shall be looking at two existing solutions, HSphere from
Positive Software Corporation and CPanel6 from cPanel Inc. both are well
known and well established products, they are also both products with which I
have first hand experience of installing, using, administering and supporting on
my work placement year.

Criteria I shall be using for evaluation within the context of my research are:

Customisation – How easily can the look and feel of the user interface be
changed? The colours? The layout? The text, for internationalisation
purposes?

Expandability – Can the system easily be expanded to add new features
as and when the host requires them?

Scalability – Will the system grow with the company as their client base
expands and can it do so in a hassle free way?

Service Diversity – Can you use more than one type of web server? Per
machine? Are you limited in what FTP software you can run? What
databases are supported?

Usability – Is the system easy for end users and administrators alike to
use? Does it make their respective tasks/jobs easier? Based on a fresh
default install.

Karl Austin
 - 9 -

1.3.1. HSphere from Positive Software Corporation

“HSphere is a scalable multiserver webhosting control panel, which
provides complete hosting automation for Linux, BSD & Win2000 platforms, is
easy to use, and has extensive user interface, billing solution, and integrated
trouble tickets system” (Positive Software Corporation, 2003)

As the description of HSphere says, it aims to provide a single consistent
interface for working with Linux, BSD and Windows 2000 hosting accounts. One
of its main selling points is the way that it can place services on one server, or
allocate a server a single task. Services are split into six distinct areas:

Control Server (Linux or FreeBSD)
Database Servers (Linux – mySQL or PostgreSQL, Windows - MS SQL)

 DNS Servers (Bind – Linux or FreeBSD)
 Mail Servers (Qmail – Linux or FreeBSD)
 RealMedia Servers (Linux or Windows)
 Web Servers (Apache – FreeBSD or Linux, IIS - Windows)

An example setup would be something as follows:

Server1 – Control panel
 Server2 – email and DNS
 Server3 – Websites
 Server4 – Databases and DNS

This flexibility in where services are hosted physically can provide many benefits
to a hosting company, such as allowing the physical hardware configuration and
the software configuration to be tailored to the particular task it is doing. So
rather than having to be a jack-of-all-trades, it can be a master of one, provided
better performance and more reliable service. Working in this manner also

Karl Austin
 - 10 -

provides a system that is highly scalable, if your web server runs out of steam,
just add another one put all new sites on it, customers don’t even need to know
there is anything different.

HSphere currently supports the following operating systems:

RedHat Linux 7.2 and 7.3
 FreeBSD 4.3 and higher
 Windows 2000 Server

Other notable features in HSphere are:

Fully integrated billing system, with support for over 15 online credit card
processors

 Fully integrated trouble ticket and knowledgebase system
 Easy modification of control panel colour scheme

1.3.2. CPanel6 from cPanel Inc.

“The Cpanel and WebHost Manager package allows you two interfaces
for web hosting control. The Cpanel interface is a client side interface, which
allows your customers to easily control a web hosting account….. The WebHost
Manager Interface allows Web Hosting companies to control the accounts on
their servers. Through WebHost Manager you can add/remove accounts on a
server, park or point domains, control bandwidth, disk space, and more.”
(cPanel Inc., 2003)

At the current moment in time, Cpanel is designed with smaller hosts in mind,
where they have a single server and run all services from it, with the exception
of primary DNS, which can run from another server, and just recently, it has
been programmed to allow mySQL services to run from a separate server. At

Karl Austin
 - 11 -

the moment Cpanel does not provide any sort of central management for large
numbers of servers, or the central management of customer data. It also does
not provide any sort of inbuilt billing system or trouble ticket system.

What this means for any organization doing large scale hosting is that they will
have to invest in more software for customer management or to create their own
to track which server a customers website is hosted on.

Currently CPanel supports the following operating systems:

RedHat Linux: 6.2, 7.1, 7.2, 7.3 and 8.0
 Mandrake Linux: 7.2, 8.0, 8.1, 8.2 and 9.0
 FreeBSD: 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7

Work is also underway on versions for Mac OSX, Debian Linux, Sun Solaris and
Microsoft Windows.

Other notable features in CPanel are:

Support for skins, the look and feel of the admin and end user GUI can be
changed by the creation of a new “skin” with each hosting plan having the ability
to use a different skin.

1.3.3. How They Compare

Customisation

CPanel – CPanel has the ability to create skins, for the admin and end
user interface. For the end user interface the skin used can be individual to each
hosting package created.

Karl Austin
 - 12 -

 HSphere – HSphere also has the ability to create skins for the end user
interface, but it does not have as well a documented set of commands as
CPanel does which makes it harder to create you own skins. Again, these skins
can be used on a per package or even per user basis. HSphere also has the
added ability to control the colours in the default skin from an easy to use control
panel – See Appendix B, Fig 3.

Expandability

CPanel – The only way custom features can be added is to create or
modify a theme to include them in it.

HSphere – The only way custom features can be added it to create or
modify a theme to include them in it, although an API to allow custom features to
be added from the hosting package creation wizard is in development.

Scalability

CPanel – Has no built in support for central management of customer
records, all records for customers are stored on the server their website is on,
and duplicated if they have more than one account. All data about accounts is
stored in text files – not providing a very robust and scalable solution.

HSphere – Manages all customer and account data from a central server,
no duplication of data as customers can have multiple accounts under one
username. HSphere uses a database to store all details, by default PostgreSQL,
but Oracle or MS SQL can also be used.

Service Diversity

Karl Austin
 - 13 -

 CPanel – Only currently works on Linux and BSD, but does offer a choice
of different FTP software to use. Work is currently under way to support other
operating systems as well. It currently supports more Linux distributions than
HSphere.

HSphere – Currently works with FreeBSD, Linux and Windows, and
offers a fairly good range of services.

Usability

CPanel – In the default fresh install the end user and admin interfaces are
well organised and easy to find items as the sections are clearly labelled and
items are not hidden in areas you would not expect to find them. Generally users
find the default interface to CPanel and WHM much more user friendly and
usable than they do for HSphere.

HSphere – Admin and end user interfaces are a little disorganised and it
can be hard to find some items as they are under menu sections that you would
not reasonably expect them to be under. This can lead to confusion on the part
of users and increased support issues raised due to users not being able to find
items to make changes themselves.

Overall

CPanel HSphere
Customisation 5 6
Expandability 3 3
Scalability 4 10
Service Diversity 5 7
Usability 7 5
TOTAL 24/50 31/50

Karl Austin
 - 14 -

1.4. Drawbacks of the existing approaches

From looking back at the scores for both HSphere and CPanel in the previous
section we can see that neither CPanel nor HSphere is an ideal solution for the
areas identified as being important. Whilst HSphere comes closest to the ideals,
and perhaps with future developments mentioned, it will score higher, something
more is needed for large scale hosting organisations.

1.4.1. CPanel

CPanel falls down on several areas, one of the most fundamental being
scalability, it was designed from the start to manage single web servers not
large clusters of servers for virtual hosting. What this means at the moment is
that CPanel has no central repository for user data, such as name and address
information, as well as for hosting account data – this can make every day tasks
such as billing quite difficult. Another point of note on scalability is that CPanel
stores all data in flat text files, which can be very inefficient with large amounts
of data or for relational data – unless data is duplicated in several locations,
which is the case with CPanel.

CPanel also does not integrate any notion of customer billing in to it, in any
medium to large sized organisation this can pose a large problem as billing can
take up a substantial amount of time, especially when you have to check if
customers have used over their allotted limits for items such as disk space and
data transfer – with CPanel in its default state, it can take roughly 10-15 minutes
per account, as firstly you have to find the server the customer has an account
on, then find the account on the server to see how much disk space it is using,
then find it in another screen to see how much data transfer it has used, then
actually bill the customer.

Karl Austin
 - 15 -

The final major failing against the criteria is that CPanel is not easily
expandable, there are currently no ways in which to fully integrate your own add-
ons for it e.g. Add an option for it to the package creation menu, so that your
feature can be enabled on a per package basis. This combined with the fairly
limited set of software which can be used with CPanel, does not provide a
hosting company a way to offer a diverse range of services under a single
common interface.

A major plus point for CPanel is the documented API for use when creating new
skins for the end user and admin GUI, what this means for an organisation is
that they can create a distinct branded look and feel to the user experience,
rather than having an interface which is instantly recognisable as that of CPanel.
This allows a hosting company to distinguish themselves a little from their
competitors, which is never a bad thing.

1.4.2. HSphere

HSphere, the same as CPanel falls down on a couple of areas, the main one
being that of expandability. At the moment there is no documented API
available for anyone who wishes to add their own modules in to HSphere, which
makes it very difficult to add new features or extend current ones.

HSphere, unlike CPanel does not suffer so much on the diversity of services, as
it provides the choice of 3 database systems (mySQL, PostgreSQL and MS
SQL), support for Real Media streaming on both Linux and Windows servers as
well as Windows 2000 based hosting with ASP support. This diversity gives
hosts the ability to provide a wide range of offerings all managed from a central
location and providing a consistent interface to the customer.

On the usability side, HSphere is currently lacking, as it stands at the moment
with the default skin, the user interface can be inconsistent and confusing, one
such example is with monetary values, in some places you will see:

Karl Austin
 - 16 -

 £7.95

In others:

7.95 £

This, mixed in with inconsistent use of () in billing, usually used to indicate a
negative value in accounting, and combined with the fact that some commands
are not in logical places can cause confusion to users and thus increase the
support workload of a host.

Karl Austin
 - 17 -

1.5. Tools for implementation

With the abundance of programming languages available it can often be difficult
to pick the right language to carry out a particular task in, to make the decision
easier it is worth ignoring the language specifics for a while and looking at the
execution method of the resultant programs. The execution method can be
categorised in to 3 different types for most modern day languages:

• Native compilers
o Compile source code in to a binary suitable for a particular

hardware and operating system (OS) combination.
• Just-In-Time (JIT) compilers

o Compile source code in to a platform independent intermediate
format, sometimes called byte-code, the byte-code can then be run
on any platform that has a virtual machine written for it to execute
the byte-code.

• Parsers
o Parsers do not compile code in to an executable, they parse the

code every time it is run and convert it into machine executable
code, run it, then dump it – although some systems will cache the
compiled code in memory for when it is needed again, but this
mainly relates to web servers (Zend Accelerator for PHP and
mod_perl for Perl).

Each execution method has it’s advantages and disadvantages which I shall
now cover:

Advantages Disadvantages
Native Compiler Faster program execution Needs to be compiled for

Karl Austin
 - 18 -

due to native compilation
for the architecture.

every machine
architecture the program
will run on.

Just-In-Time Compile once, run
anywhere, allows for high
degree of portability.

Can be easy to reverse
engineer the byte-code to
the original (or near
enough) source code.

Parser No need for compilation
after a code change,
allows for rapid
prototyping.

No need for compiling, so
will run anywhere that the
interpreter does.

Slow execution compared
to compiled programs as
code has to be interpreted
every time it is run.

Examples of natively compiled languages are:

• C/C++
• Assembly Code

Examples of Just-In-Time compiled languages are:

• Java
• Microsoft .NET

Examples of parsed languages, sometimes known as scripting languages are:

• PHP
• Perl

Karl Austin
 - 19 -

• Python

For the development of the proof of concept application, I shall be considering 3
languages, C/C++, Java and PHP and have compared them below on key
criteria for any development project.

C/C++ Java PHP
Learning Curve 3 5 7
Ease of web use 3 9 10
Execution Performance 9 7 6
Development Speed 5 7 7
Development Ease 4 6 8
Scalability 7 8 4
TOTAL 31 42 42

From the above comparison we can see that both Java and PHP figure strongly
for use in the development of the system, as it is only going to be a proof of
concept and due to the time constraints and my own overwhelming experience
with PHP I believe it would be the best choice for the proof. PHP will allow the
rapid testing of any changes to the code base as it does not need to be
compiled before running.

In a production system it would be wiser to use Java as it provides features such
as object persistence so that objects are still in memory after an operation has
been executed, unlike PHP where objects die once the requested piece of code
has finished executing. Java also provides advanced support for databases,
such as connection pooling which can reduce the load placed on a database
server and help conserve system resources and above all, Java on the server
side has been designed with scalable enterprise applications in mind, whereas
PHP was conceived to save time on developing personal home pages.

Karl Austin
 - 20 -

1.6. My approach

From my research in to existing solutions, I believe the best approach to take is
one similar to what HSphere takes, to have a central control server which is in
charge of storing all configuration data and customer data in a central repository.
As well as storing the data I believe the server should be in charge of processing
the data in to the relevant format for the server, so that it may be written straight
to the configuration file for it - without the client machine having to do any further
processing. What this means is that any issues with the control server can be
debugged on the control server and not have to involve changing code across
multiple servers to debug/fix the problem, thus simplifying the development and
ongoing maintenance process.

Karl Austin
 - 21 -

2. System Design

2.1. Design notations

2.1.1. UML

“The Unified Modeling Language™ (UML) is the industry-standard language for
specifying, visualizing, constructing, and documenting the artifacts of software
systems. It simplifies the complex process of software design, making a
"blueprint" for construction.” (Rational Software, 2003)

UML uses 9 types of diagrams to document the design of a system, they are:

• Class Diagrams

o Describe the structure of the system, what classes/object it will
use, the methods and data members they have and how they
relate to each other.

• Package Diagrams

o Used to organise related elements of a system in to groups, to
help reduce the number of dependencies between them.

• Object Diagrams

o Object diagrams are used to describe the structure of a system at
a particular point in time and can be thought of as an instance of a
class diagram at a particular point in time.

• Use Case Diagrams

o A use case diagram is used to model the functionality of a system
in terms of use cases and actors (users). A use case is a

Karl Austin
 - 22 -

method/function provided by the system e.g. Print Document, Spell
Check.

• Sequence Diagrams

o A sequence diagram shows a particular execution path through a
system, from the point of user interaction e.g. What happens in
terms of classes and method calls/messages when a user clicks
the print button in an application.

• Collaboration Diagrams

o A collaboration diagram is used to describe the interactions (In
terms of sequenced messages) in a system between objects.

• State Diagrams

o A state diagram shows what happens when part of the system
changes from one state to another e.g. A button is clicked by a
user.

• Activity Diagrams

o An activity is an operation on an object that results in a change of
state. It is the job of an activity diagram to show the flow of control
between activities.

• Component Diagrams

o A component diagram is used to show the organisation of the
physical software components in the system e.g. The source code
of the system, the binary executable files, the resources etc.

• Deployment Diagrams

Karl Austin
 - 23 -

o Deployment diagrams show how the physical resources of a
system are organised e.g. Server nodes, client nodes and what
components reside in/on each physical resource.

UML is not a methodology as such, more a general systems development
notation, hence UML is ideal for documenting the design of a wide range of
systems, from small proofs, all the way to large scale enterprise systems due to
the large variety of pre-defined constructs within it and the fact that it is not
rigidly set in stone – If you don’t want to produce one type of diagram because it
is not needed, then you don’t have too for it to work effectively for you.

2.1.2. SSADM

Structured Systems Analysis and Design Methodology (SSADM) is a widely
used development method often specified as a requirement for UK government
computing projects and is specified in BS7738. It aims to improve the control
and project management aspects of development, make better use of both
inexperienced and experienced staff whilst making projects resilient against the
loss of any member(s) of staff and to above all, produce better quality systems
as a result of applying it.

SSADM is comprised of 6 stages, which are:

• Stage 1 – Investigate the current environment
o Draw a Data Flow Diagram (DFD) and a Logical Data Model

(LDM) showing the current system.

• Stage 2 – Business Systems Options (BSOs)
o Describe possible new systems in terms of functionality and

implementation issues. Use text and skeletal DFDs and LDMs.

Karl Austin
 - 24 -

• Stage 3 – Requirements Specification

o After choosing a BSO, refine DFDs and LDMs. To model how the
system will respond to events (entity behaviour modelling), draw
and entity life history (ELH) diagram, an effect correspondence
diagram (ECD) and enquiry access paths (EAP).

• Stage 4 – Technical System Options (TSOs)

o Describe the costs, benefits and constraints if implementing the
specification.

• Stage 5 – Logical Design

o Define how data is processed by the system and describe user
dialogs. Update the entity life history diagrams with state
indicators and draw and updated processing model (UPM)

• Stage 6 – Physical Design

o Develop user interface structures and implement logical
processes.

(Smartdraw, 2003)

SSADM is a structured methodology, which was originally conceived for use
when developing information systems, hence is tailored towards systems that
place a great deal of emphasis on the information they store e.g. a bookings
system for a hotel. SSADM also follows the waterfall approach, meaning that
you have to start at the top of SSADM at stage one and work your way through
all 6 stages, completing and signing off each stage as it is finished – This means
it is very rigid and does not offer a great deal of flexibility.

Karl Austin
 - 25 -

2.1.3. Conclusions

I feel that UML is the more appropriate tool for documenting the design of the
system in discussion, as we are only dealing with a proof of concept deliverable
based on the ideas laid out. I believe that using SSADM would take up too
much time from other areas of the project, whilst it provides a very structured
approach to the whole development life-cycle it can be easy to get bogged down
and stop making any real progress, which considering the time constraints set
out, would not be wise to let happen, therefore UML shall be my choice for
documenting the system.

Karl Austin
 - 26 -

2.2. Design and development methodologies

Throughout this section I will use a system as an example where information
about Users and Visitors is stored, a User being a member of staff who can login
to a companies system and a Visitor being someone visiting the company.

When designing systems there are two approaches we can take to the
development of the code for the deliverable, we can take the procedural
approach or the object oriented (OO) approach to developing our code.

2.2.1. Procedural design

Code is usually organised in to functions, and to make organisation easier it is
nearly always organised in to appropriately named files too e.g. User.c, Guest.c,
Visitor.c although there is no requirement to do so, neither is there a
requirement to place code in to functions in most languages. So in the worst
case with procedural programming we could end up with a file looking like:

getUserName()
getVisitorCompany()
getUserLastLogin()
getVisitorName()
getUserLoginName()
getVisitorLastVisit()

As you can see, it’s not very ordered and organised, even for a small application
it could get very messy, very quickly and be difficult to track down where various
functions reside and how they relate to each other. Also a problem is data
encapsulation, if you have global variables that related functions need to have
access too, you have no way of stopping unrelated functions interfering with

Karl Austin
 - 27 -

them – this can cause many problems and be very difficult to debug, for
example:

You have a variable, counter, that you rely on to keep track of how many
times a certain type of operation has been performed, e.g. a query to a certain
database table. Now if another set of functions also wanted to use a counter to
keep track of an operation, they would have to make sure that they used a
different global counter variable. If they did not, then they could end up
incrementing the same counter, causing problems with the counter being
incremented faster than the functions that used it expect it to be, possibly
causing problems if they rely on the value for any calculations or for triggering
events. This can be hard to debug as you would have to find all functions that
use the global counter variable and change them to use their own variable, but
you would also have to find all related functions and change them to use the
same related counter variable, as you can see, it can get quite complex.

2.2.2. Object Oriented design

Code functions are organized into logical objects e.g. all methods and data
elements for working with user data (Information about a person) could be
stored in a User object with methods:

getName()
getLoginName()
getLastLogin()

And a Visitor object (For visitors to our example company):

getName()
 getLastVisit()
 getCompany()

Karl Austin
 - 28 -

As you can see, we have a method in common between the Visitor and User
objects, getName(). To take our design a step further we can utilise one of the
fundamentals of OO design, sub-classing or extending objects. By taking out
common elements for a Person (Visitor and User are both persons at a base
level) we create a Person object with the following methods:

getName()
 getAge()

Now we change our User object, to extend the Person object with the following
methods:

getLoginName()
 getLastLogin()

We also change our Visitor object to extend the Person object and add the
following methods:

getLastVisit()
getCompanyName()

Moving out the common features of User and Visitor means that in the future,
should we need to change the way any of the common methods work e.g.
getName() We only have to change it in the Person object and the User and
Visitor objects won’t notice any difference and won’t have to be changed. If we
had left getName() in both User and Visitor then we would have to change both
of the objects to reflect the new way of coding getName(). Doing so is not ideal
as it can lead to inconsistencies in code that can be very difficult to track down,
especially once a system is in production use.

Karl Austin
 - 29 -

Other advantages of OO design and construction are:

Encapsulation – We can define what other functions can have access to
variables in the object e.g. Only methods in the Person object can change the
age data member, but the Person object and all sub-classes can change the
name data member. Or we can make data members available so that any
method in any object can access them, something which is not advisable
though.

Object Oriented design and construction is not always the best approach for all
software as it can add extra programming overhead and in interpreted
languages in can also add extra processing time in some cases. OO design is
really only suited to developments where you have discreet data objects where
the data and methods for manipulating the data can be contained in a single
object, or where there are many variations on a theme e.g. the Person, User,
Visitor example or in the case of this system, Server, Web Server, Apache Web
Server.

2.2.3. Conclusions

It is my belief that OO design principals and practices are best suited to this
project over procedural design, due to the fact that it is mainly comprised of
discreet entities that require data storing about them and/or working on e.g.
User, Domain Name, Server etc with some of them being of a similar theme and
suitable for sub-classing e.g. Apache Web Server is a sub-class of Web Server
which is a sub-class of Server.

Karl Austin
 - 30 -

2.2.4. Design Patterns

“Each pattern is a three-part rule which expresses a relation between a certain
context, a problem & a solution” (Dearden, 2003)

Taking OO design a step further, we come in to the realm of design patterns,
each pattern is a solution to a common design problem, which can be used
when solving your own design problems. Design patterns are not just specific to
software engineering, they started out in the realm of engineering with a man
named Christopher Alexander coining the phrase “Pattern Language” as the
way we describe abstract solutions to recurring problems.

One such pattern is the abstract factory pattern, it describes how we can allow
the creation of one of a family of related objects, leaving the decision on which
object to create till the time of object instantiation, without having to hard code
if/switch statements to make the decision everywhere we need to instantiate an
object from the family.

For example, in the design of our system, we will need to control the web and
DNS servers, of which we can have multiple types e.g. Apache Web Server or
Zeus Web server and Bind DNS Server or DJBDNS Server. To solve this, we
would create an abstract WebServer factory and an abstract DNSServer factory,
which would handle the specifics of which web/DNS server to create based on a
variable set at runtime in the system. The client application would ask the
WebServer factory for the web server object, passing it the variable for what
type it would like, the WebServer factory would then instantiate a sub-class of
the WebServer class that implemented the correct functionality for the server
requested. The application would then use the returned object without ever
knowing that it was a different object to what it requested, as the object is a sub-
class of the abstract WebServer, implementing all the required methods for
operation – Thus, the implementation specifics for each type of web server are
hidden from the client.

Karl Austin
 - 31 -

2.3. The Design

Taking in to account the above design decisions and the requirement of the
system to be easily expandable/module it seems prudent to make use of the
Abstract Factory Pattern (AFP) in the design of the system. The AFP tells us to
define abstract classes for a factory that define the methods a concrete factory
should provide, how the concrete factory implemented the methods does not
matter to the application using the factory or the products of the factory. We
also need to define abstract and concrete products when applying the AFP,
again, the abstract product defines the methods a concrete product should
implement, but not how it should. Using the abstract + concrete approach
allows us to provide a consistent object interface to any application utilising the
factory/product whilst hiding the implementation and ultimate class type of the
factory/product objects from the application – What this means is that we can
easily add new factories/products based on the abstract factory/product without
having to make any changes to the client application if we so wish, ideal for our
application.

With this in mind, it would make sense to create a Concrete Factory for each
type of service we want to support e.g. Web, STMP, POP, DNS, FTP etc. Or in
the case of our proof of concept, just Web and DNS, then we would create
Concrete Products for each Factory which represent the various applications
that can be used to host the particular service, so for the Web Factory we create
an Apache concrete product and for the DNS Factory we create DJBDNS and
Bind Concrete Products. From this, we can produce a highly simplified class
diagram showing how the various Abstract and Concrete classes relate to each
other, as can be seen in Figure 2 below.

Karl Austin
 - 32 -

Figure 2: Applying the Factory Pattern

If we take the above classes, we can produce a sequence diagram of what
would happen when creating a new configuration for the Apache web server, as
seen in Figure 3 below.

Karl Austin
 - 33 -

Figure 3: Sequence diagram for creating a new Apache web site.

As you can see, the first task is to ask the main factory class for a WebServer
factory which can then be used to fetch an instance of a WebServer sub-class,
in this case ApacheWebServer. After this happens, the application sets the
configuration of ApacheWebServer, then it instructs the class to run the
configuration – which as some stage involves connecting to a remote server to
execute commands on it, to configure the service.

Karl Austin
 - 34 -

A similar set of events would also happen for configuring the Bind of DJBDNS
servers, except a DNSServer factory would be asked for instead of a WebServer
factory and currentServer would be of the appropriate concrete product class.

As the program deliverable is only as a proof on ideas, I believe this is enough
of a system design to work from, it is only minimal, but the main focus of the
project is to look in to ideas for modularity in the coding of the system, and this
cannot be shown all that well through design without having many very similar
diagrams which serve no purpose when implementing the system – Thus I feel it
is better to let the development and the implementation actually do the work of
showing off the ideas.

Karl Austin
 - 35 -

3. System Development

3.1. Implementation considerations

One item of particular importance when developing a distributed system is the
approach taken to distributing the workload between the client and the server.
Two common approaches are:

Thin client, fat server – The server does the vast majority of the work,
then instructs the client what to do.

Thin server, fat client – The server just sends any data to the client, the
client then handles any processing of the data.

Each system has it’s advantages and disadvantages, but before looking at them,
it is worth outlining how each of the two approaches would apply to the system
in discussion.

Thin client – The server would process any data, in to a format that the
client can understand without the need for any additional software to be installed
on the server other than what comes with the operating system and also without
the need for any additional processing of the information passed from the
server. For example, when setting up a new web site, the server would take all
the configuration information, turn it into a block of commands that the client
would understand e.g. echo this data into this file. The server would then pass
the command block to the client for running.

Thin server – The server would take any data and pass it to the correct
client for processing, the client would then handle the tasks of working out what
to do with the data. For example, when setting up a new web site, the server
would pass all the data needed for configuration to the client, the client would

Karl Austin
 - 36 -

then process the data into configuration commands for the software and execute
them.

Advantages Disadvantages
Thin Client Keeps all processing code in

one location, so that if it is
changed, it only needs
updating on the server, not
on multiple client machines.

Less overhead placed on the
client server, meaning more
CPU time can be spent on
doing it’s actual job rather
than processing configuration
data.

Places extra load on the
server as it has to carry out
more of the processing
tasks.

Thin
Server

Removes a lot of the
processing from the server,
meaning a less powerful
server can be used or more
clients can be serviced from
each server.

Takes the client machine
away from just carrying out
its specific task, it now has to
deal with processing data
into configurations.

Karl Austin
 - 37 -

3.2. Communication protocols

One of the most important aspects when designing any distributed system is the
communication medium that will be used and the security of it. The security of
the communication channel becomes even more important when the Internet is
involved as it is an open and public network, where any node on the network
has the ability to listen in on traffic passing through it.

There are two main protocols for securing communications over the Internet,
these are:

Secure Socket Layer/Transport Layer Security (SSL/TLS)

and

Secure Shell (SSH)

SSL/TLS is the dominant protocol for securing data transmission over HTTP as
it is used for secure server certificates to provide https functionality to web
servers, it can mainly be seen securing the numerous e-commerce sites on the
Internet. SSL isn’t however used exclusively for securing HTTP traffic, it can be
used for securing any sort of traffic over TCP/IP and is used to secure FTP,
SMTP and POP3 protocols too, as well as many custom built applications.

SSH is the dominant protocol for remote console connections over IP to servers,
it is a secure replacement for RSH (Remote Shell) which provides a text based
console, just as if you were sat at the server. SSH can also be used to tunnel
other protocols through it, such as FTP, providing a more secure version of FTP
as the communication channel to the server is passed over SSH thus encrypting
the communication of commands, usernames and passwords.

Karl Austin
 - 38 -

For this particular application, a combination of SSL/TLS and SSH would be the
best approach, with SSL/TLS being used to secure the web interface, so that
passwords and user details cannot be packet sniffed for. SSH would then be
used between the control server and the remote servers for executing the
commands to configure services as it has options for logging in to servers
without a password – as long as the server trying to login to the remote server
has their public key installed on the remote server, this feature makes it ideal for
use in remote communications between servers, especially when coupled with
the ability to automatically run a command on connection when using the
OpenSSH client e.g.

ssh root@server.example.com “ls”

The above command would execute the Unix ls (Similar to the DOS dir
command) command once it has connected as the root user on the server
server.example.com. This feature makes it very easy to use the SSH client from
within any program, as you do not have to pipe the command you want to
execute into a running process of the SSH client – which can be troublesome on
some operating systems, especially if they do not support reading and writing
from the same pipe, only one or the other.

mailto:root@server.example.com

Karl Austin
 - 39 -

3.3. Data storage

3.3.1. Configuration data

For configuration data, I believe it would be best to have it stored in text flat text
files, as it makes it very simple to change any items with just a text editor over a
secure shell session e.g. from a PDA or Mobile Phone. Reading data from
simple text files is also considerably quicker than connecting to a database and
running a query to get the data, as long as there are no complex rules to reading
the configuration file – else a database will be faster.

For each concrete product, there will be a set amount of information stored,
which will include:

Commands to start, stop, restart and reload the application the concrete product
controls
The commands needed to configure a new item/account/user on the product

I propose to store this data in an XML file, with the following structure:

<module name="" type="">

<commands>
<start></start>
<stop></stop>
<reload></reload>
<restart></restart>

</commands>
<configuration type="">

<file order="" type="" test="">
<location></location>
<data></data>

</file>
</configuration>

</module>

The top level module element, has attributes for the name of the module and its
type, in the case of Apache these would be, name=”Apache”, type=”Web”

The commands block is pretty self explanatory, it stores the commands needed
for starting, stopping, reloading and restarting the application that the module
controls e.g. the Apache service on a server.

The configuration block is where the real work is done in configuring the
application, the type attribute is used to store what configuration method the

Karl Austin
 - 40 -

application uses, at the moment it can only have the value “file”, to indicate that
the application uses textual configuration files. In theory it can be adapted to
support applications that use a database, or a special application on the server
to handle the configuration of the application.

The file element is used to indicate a single file used in the configuration of the
application, it has an order attribute which is used to specify in which order the
files are to be written if there is more than one, the type attribute is used to
indicate if the file in question should be overwritten (truncate) or added too
(append). The test attribute is used to store a data value that will be checked for
in a file when appending to it, if the value exists in the file, then it will not be
added again to the file. The location child element stores the physical location
of the file on the remote server and the data child element stores the actual data
that should be written to the file.

If we put all this together, we have a complete XML configuration descriptor for
the Apache web server:

<module name="Apache" type="Web">
 <commands>
 <start>/meta/apps/apache/bin/apachectl start</start>
 <stop>/meta/apps/apache/bin/apachectl stop</stop>
 <reload>/meta/apps/apache/bin/apachectl reload</reload>
 <restart>/meta/apps/apache/bin/apachectl restart</restart>
 </commands>
 <configuration type="file">
 <file order="1" type="append" test="**domainid.conf">
 <location>/meta/config/apache/vhosts.conf</location>
 <data>Include
/meta/config/apache/**domainid.conf</data>
 </file>
 <file order="2" type="truncate">

<location>/meta/config/apache/**domainid.conf</location>
 <data>
 <![CDATA[

**configoutput
]]>
 </data>
 </file>
 </configuration>
</module>

Karl Austin
 - 41 -

The ** that you can see in the configuration descriptor above are used to denote
the start of a variable that will be replaced later on in the execution of the
application e.g. **configoutput will be replaced with the actual data to be written
to the configuration file.

Using the above configuration descriptor has allowed me to develop a generic
configuration routine that can configure any of the current concrete products and
any future concrete products that use the file based configuration method. What
it also means is that there is no complex programming logic to decide which
concrete product we are configuring and how to actually go about configuring it.

3.3.2. General system data

General system data for this application can consist of:

User data
Personal Details
Details of any accounts they have
Account Data
Configuration settings for domains e.g. DNS, Apache
Details on hosting accounts, such as number of email address allowed etc.

Due to the large quantities of data that can be generated by the above and the
sometimes complex relationships between the data, it is better suited to storage
in a relational database system, such as PostgreSQL, Oracle, Sybase ASE etc.
however due to time constraints imposed on the development of the proof of
concept it has not been possible to make use of a relational database system
and only details on the DNS and Web server settings for a test domain have
been stored, in an XML formatted text file, as shown in Appendix C.

The data for the Web Server includes:

Domain Id, Domain name, Domain IP, Domain Aliases
Location of web files, location and format of log files
Location of custom error pages
Configuration of and file extensions for, CGI, PHP, SSI
Options for directory indexing

The data for the DNS Server includes:

Karl Austin
 - 42 -

Domain name, Domain IP
DNS record Serial number, refresh time, retry time, expiry time, time-to-live, start
of authority and the hostmaster email address
Details of sub-domains, mail servers, and cname aliases
Options for controlling reverse IP lookups and domain wildcarding (enabling
*.example.com to function) are also included

Karl Austin
 - 43 -

3.4. Turning data in to configurations

For the system to actually be useful, we have to turn data about the domains
and settings in to actual usable configurations, this may mean taking the data
and formatting it into a specific configuration syntax or formatting it in to SQL
queries to be executed. The most common approach to this would be to create
a block of program code for each application we wanted to control, and use the
code to output the configuration commands interspersed with the configuration
data stored in the system. Whilst this approach works and is simple, it is not an
ideal situation and does not lend itself well to future expandability.

3.4.1. Enter XSLT

The World Wide Web Consortium (W3C) defines XSLT as:

“a language for transforming XML documents into other XML documents”

So how can it be useful in the system? The W3C defines XSLT as transforming
XML into another XML format, however this does not have to be the case with
most XSLT engines on the market, most can also transform XML in to plain text,
which is where it becomes useful to us. We can use XSLT to transform our XML
configuration data in to any format that we please now, meaning we can take
our Apache configuration descriptor and turn it in to some PHP code that can be
executed as shown below.

$command['start'] = '/meta/apps/apache/bin/apachectl start';
$command['stop'] = '/meta/apps/apache/bin/apachectl stop';
$command['reload'] = '/meta/apps/apache/bin/apachectl reload';
$command['restart'] = '/meta/apps/apache/bin/apachectl restart';

$file[1]['io'] = 'append';
$file[1]['location'] = '/meta/config/apache/vhosts.conf';
$file[1]['data'] = 'Include /meta/config/apache/10001.conf';
$file[1]['test'] = '10001.conf';

Karl Austin
 - 44 -

$file[2]['io'] = 'truncate';
$file[2]['location'] = '/meta/config/apache/10001.conf';
$file[2]['data'] = '

<VirtualHost 62.149.37.18>

<<snip rest of apache configuration>>

</VirtualHost>

';
$file[2]['test'] = '';

We aren’t just limited to converting to PHP, we can convert to any format we can
create an XSLT style sheet for – which is pretty much any ASCII format
conceivable. The use of XSLT to transform our data allows us great flexibility
and power within the system, for example, to create the admin GUI to control the
configuration descriptor, all that would be needed now is an XSLT style sheet to
convert the XML into an HTML form to be displayed in a web browser, and to
create the code to save the data when submitted back in to XML format – The
style sheet would then be used for the editing of all configuration descriptors,
thus providing a consistent user interface, whose look and feel can be controlled
from one file whilst effecting the look and feel of all configuration descriptor
editors. The same scenario can be applied to the actual data stored for the web
and DNS server configuration, except we could provide and administrator XSLT
style sheet, that allows all of the items to be edited and saved and an end user
XSLT style sheet, that only allows them to change certain aspects of the data
e.g. Prevent them from changing the home directory of their domain name,
which would prevent them setting it to that of another customer.

Karl Austin
 - 45 -

3.5. Verification and validation

As the program deliverable is only relatively small in terms of features used, it is
quite easy to validate whether it is functioning correctly. As its main role is to
output configuration data, we can check the validity of this at any time by
running the syntax checker for the various applications.

For Apache configurations:

apachectl configtest

This will open up the Apache configuration file and check it for any syntax errors
or other problems that would stop Apache from running.

For BIND zone files:

named-checkzone karlaustin.com karlaustin.com.bind.conf

This will check the DNS zone described in karlaustin.com.bind.conf and see if it
produces all the correct items for the domain karlaustin.com such as SOA
record and other mandatory items, as well as checking that other configuration
lines are of the correct format to be used.

To check for correct formatting of DJBDNS configuration files:

tinydns-data

This will recompile the DJBDNS data file in to the binary format that it
understands, if there is a problem then it will print an error message to that
effect.

Karl Austin
 - 46 -

We can also verify that the configurations are correct by actually trying them, in
the case of Apache this involves visiting a web site configured by the system
and verifying that the pages within it are served correctly. For DNS we can do a
query against the DNS server to see what information it has for a domain that
the system has configured:

[root@rogue ip]# nslookup -sil
> set type=any
> server rogue1.kdawebservices.com
Default server: rogue1.kdawebservices.com
Address: 62.149.37.63#53
> karlaustin.com
Server: rogue1.kdawebservices.com
Address: 62.149.37.63#53

Name: karlaustin.com
Address: 62.149.37.15
karlaustin.com
 origin = rogue1.kdawebservices.com
 mail addr = hostmaster.karlaustin.net
 serial = 2002111317
 refresh = 10800
 retry = 3600
 expire = 604800
 minimum = 86400
karlaustin.com nameserver = rogue2.kdawebservices.com.
karlaustin.com nameserver = rogue1.kdawebservices.com.
karlaustin.com mail exchanger = 10 mail.karlaustin.com.
karlaustin.com mail exchanger = 20 mail2.karlaustin.com.

We can now compare the above output, to what we would have expected from
looking at our XML data file with information for the domain in it. If we do this
and compare it to the DNS data XML file in Appendix C, we can see that the
domain was indeed supposed to resolve to IP address 62.149.37.15 and that
there should have been two MX (mail exchanger) records, thus verifying that the
DNS zone was created correctly.

Karl Austin
 - 47 -

4. The deliverable

The main deliverable of the project will be a set of ideas and solutions for
developing modular software and a proof of concept application to demonstrate
the ideas, the application will demonstrate:

• How we can code a plug-in type interface to a system, so that it does not
need to know about all possible modules it will execute

o This is a key issue to solving the problems of system expandability
as outlined in the project specification. If a generic interface in to
the system can be created then the control software should be
able to work with and control any current and future software we
may wish to use, without having to perform any form of extensive
upgrading.

• How we can communicate between two servers securely from inside a

program and execute applications on the remote server.
o This is a central issue to any hosting automation system that relies

on a client-server model, if communication is not secure, then it
could lead to the whole system being compromised and result in a
highly embarrassing situation for a host.

• How we can make significant parts of the program implementation

language independent
o If we can make parts of the program language independent, then

we move a step closer to being platform independent as was one
of the goals of the system. If we remove the dependency on the
implementation language then we remove the need for their to be
a compiler/virtual machine/parser for the machine architecture to
be available.

Karl Austin
 - 48 -

The application will be able to:

• Create configurations for Apache web server
• Create configurations for BIND and DJBDNS DNS servers

o Doing this will demonstrate how the system can create two
separate application configurations from a common data and how
the modularity is built in to the system.

• Control the starting, stopping, reloading and restarting of Apache, BIND

and DJBDNS
o Doing this will show how applications on one server may be

securely controlled by another server in a remote location.

As the application is only a proof of concept on a series of ideas, it is important
to not get too carried away with it, as it could turn in to a very large body of work
if we started to replicate the facilities and functions offered by CPanel and
HSphere – As these projects have been in development for several years now
and not for the 300 hours allocated for this whole project which includes
research and write-up, not just development.

Karl Austin
 - 49 -

5. Critical evaluation

5.1. The process

After going through the whole process from initial idea to deliverable and firm set
of ideas on developing modularity in application design and coding it is clear to
me that more time should have been spent on creating an action plan for the
development of the application deliverable and for scheduling the many tasks
that needed to be undertaken.

Whilst the design of the software is minimal, this is due to the fact that the
software deliverable was only ever intended to be a proof of concept of the
modular software development ideas – Therefore it was not appropriate to
spend a substantial amount of time on the design on a throw-away proof of
concept, in my opinion the time saved on design was much better spent gaining
a better understanding of how HSphere and CPanel function.

Karl Austin
 - 50 -

5.2. The deliverable

The deliverable has met the majority of its goals, with the exception of having a
nice graphical user interface (GUI) to demonstrate it with, the development of
which was discussed previously in the development section on the report.

Development of the deliverable went reasonably smoothly, but could have been
carried out better as some of the development work was carried out in a
procedural coding fashion and had to later be converted in to an object oriented
system, which did have a time penalty.

Karl Austin
 - 51 -

5.3. Areas for future development

Areas for future development of the system include turning the proof in to a
working system, most likely using Java Servlets and JSPs along with
PostgreSQL relational database system for data storage. Other obvious areas
for future development include writing the modules for controlling other needed
items such as:

• Email
• Databases
• FTP

Which are considered standard features with any hosting account these days.

To turn the system in to a commercial reality it would also need a GUI designing
for it, for both the administrator and the client interfaces, ways of achieving this
were discussed in the development section, with the conclusion being that most
of it can be achieved by creating an XSLT style sheet to format the existing XML
data in to an HTML form for editing, reducing the development of the GUI
significantly. KDA Web Services Ltd. Have shown interest in taking these ideas
and turning them in to a commercial product as have a few other hosting
companies that were spoken too during the course of the project, which goes
some way proving that there is possibility for commercial exploitation.

One area that was shown particular interest in was that of turning the use of the
system to clustering, to provide redundant services, so that a web site may be
set up on a cluster of web servers, rather than the traditional one server – so
that if one web server fails, one of the others will take over. It would be prudent
in the future to look further in to this issue as “normal” web hosting becomes
abundant and commonplace web hosts need something to differentiate
themselves from the rest of the market.

Karl Austin
 - 52 -

5.4. Conclusion

Conclusions that I have drawn from this project are that modular and flexible
software can be achieved, but only if it is designed to be modular and flexible
from the start, it is not something that can be bolted on afterwards as an
afterthought to the design. It has to be carefully thought out, considering all
aspects of the system, from storing configuration information for applications,
handling communication between servers and the actual coding of the module
interface.

From research carried out, I can also draw the conclusion that there is no
current ideal hosting automation solution available to web hosts and there most
likely never will be unless modular, pluggable software is developed for the
market – The reason being that all web hosts have a different definition of ideal,
for some it is Windows based hosting, for others it is being able to offer a
combination of Linux and Windows based hosting with clustering support. No
one product in its entirety is going to be ideal for everyone, as when you try to
be the jack of all trades, you become master of none. So the solution to this is
to produce a base product that has enough features to meat the common
ground for all hosts, then provide a framework in to which hosts may add their
own modules, to do their own specific tasks to tailor the system to their ideals.
What it also means for hosts, is that they have a potential new revenue stream
from marketing their own plug-in modules for the system, and if more
modules/features for a product are on the market, then there is more incentive
for people to buy the base product.

My final conclusion is that any company that has the vision, the time and the
skills to take these ideas and develop a system with them, has the potential to
be a market leader and reap the rewards that such a status brings.

Karl Austin
 - 53 -

References

cPanel Inc., (2003), CPanel.NET, [online], last accessed on 10 February 2003 at
URL: http://www.cpanel.net

Dearden, Andrew, (2003, February 6th), Case Study 3: Patterns & the SWING
libraries, CMS, SHU

Netcraft Ltd., (1996), Netcraft Web Server Survey - All Domains, [online], last
accessed on 26 March 2003 at URL:
http://www.netcraft.com/Survey/Reports/9601/ALL/

Netcraft Ltd., (2003), March 2003 Web Server Survey, [online], last accessed on
26 March 2003 at URL:
http://news.netcraft.com/archives/2003/03/25/march_2003_web_server_survey.
html

Positive Software Corporation, (2003), Positive Software Corporation, [online],
last accessed on 10 February 2003 at URL: http://www.psoft.net

Rational Software, (2003), Unified Modeling Language Resource Center,
[online], last accessed on 18 March 2003 at URL:
http://www.rational.com/uml/index.jsp

Smartdraw, (2003), Learn about the six SSADM4 stages, [online], last accessed
on 4 April 2003 at URL:
http://www.smartdraw.com/resources/centers/software/ssadm.htm

W3C, (1999), XSL Transformations (XSLT), [online], last accessed on 2 April
2003 at URL: http://www.w3.org/TR/xslt

ZoneEdit.Com, (2002), Simplified example of how DNS works, [online], last
accessed on 12 February 2003 at URL: http://www.zoneedit.com/doc/dns-
basics.html

http://www.zoneedit.com/doc/dns-basics.html
http://www.zoneedit.com/doc/dns-basics.html
http://www.w3.org/TR/xslt
http://www.smartdraw.com/resources/centers/software/ssadm.htm
http://www.rational.com/uml/index.jsp
http://www.psoft.net/
http://news.netcraft.com/archives/2003/03/25/march_2003_web_server_survey.html
http://news.netcraft.com/archives/2003/03/25/march_2003_web_server_survey.html
http://www.netcraft.com/Survey/Reports/9601/ALL/
http://www.cpanel.net/

Karl Austin
 - 54 -

Bibliography

Apache Software Foundation, (2003), The Apache HTTP Server Project,
[online], last accessed on 6 March 2003 at URL: http://httpd.apache.org

Bernstein, D. J., (2003), djbdns: Domain Name System tools, [online], last
accessed on 8 March 2003 at URL: http://cr.yp.to/djbdns.html

Floyd, Michael, (2000), Building Web Sites With XML, Prentice Hall

Hillside.net, (2001), Patterns Home Page, [online], last accessed on 20 March
2003 at URL: http://www.hillside.net/patterns/

Internet Software Consortium, (2003), Internet Software Consortium – BIND,
[online], last accessed on 8 March 2003 at URL:
http://www.isc.org/products/BIND

Jaiman, Ashish, (2001), Abstract Factory Pattern, [online], last accessed on 4
April 2003 at URL: http://www.dotnetextreme.com/articles/abstractfactory.asp

Medvidovic , Nenad, (1999), Assessing the suitability of UML for modelling
Software Architectures, [online], last accessed on 4 April 2003 at URL:
http://www.ics.uci.edu/~irus/bart/flyers/99/presentations/july99-neno/

Pressman, Roger (2000), Software Engineering, A Practitioner’s Approach, 5th
Edition, McGraw Hill

Smartdraw, (2003), Types of UML Diagrams – Unified Modeling Language
(UML), [online], last accessed on 4 April 2003 at URL:
http://www.smartdraw.com/resources/centers/uml/uml.htm

W3C, (2001), XML Base, [online], last accessed on 21 February 2003 at URL:
http://www.w3.org/TR/xmlbase/

http://www.w3.org/TR/xmlbase/
http://www.smartdraw.com/resources/centers/uml/uml.htm
http://www.ics.uci.edu/~irus/bart/flyers/99/presentations/july99-neno/
http://www.dotnetextreme.com/articles/abstractfactory.asp
http://www.isc.org/products/BIND
http://www.hillside.net/patterns/
http://cr.yp.to/djbdns.html
http://httpd.apache.org/

Karl Austin
 - 55 -

Appendix A – Project Specification

Project Definition
 Team: Karl Austin supervised by Mike Parr
 Date: 10/11/2002
 Degree Route: BSc (Hons) Software Engineering

Title: Developing modular software with reference to web hosting
automation

Elaboration
 Description
 To produce a modular proof of concept deliverable implementing
the web server and DNS sections of web host automation software based on the
client-server architecture. The project aims to show that moderately platform
independent, highly modular and scalable software can be developed for
deployment by users with little knowledge of the application domain.

What it involves
 Evaluate current solutions
 Evaluate hardware solutions
 Evaluate language for implementation
 Evaluate communication protocols

Objectives and Deliverables
 Refined Description

The system will demonstrate how robust, modular, scalable client-
server applications can be developed with current technologies
and development techniques. It will demonstrate the management
of the Apache web server software and the BIND name server
software – although as an alternative it will also demonstrate how

Karl Austin
 - 56 -

DJBDNS name server software could be used in place of BIND by
writing a plug-in module for it.

What will be produced?
A proof of concept deliverable for the ideas discussed and will
implement the code needed to add domains to a web server which
will involve such things as creating user accounts, creating/ editing
DNS server entries and creating/ editing entries in the Apache
configuration files.

Tasks

Task Duration
Research software requirements 8 Hours
Investigate existing solutions 24 Hours
Asses existing software against requirements 12 Hours
Create development plan 4 Hours
Investigate appropriate technology for
implementation

60 Hours

System Design 24 Hours
Development 98 Hours
Critical Evaluation 24 Hours
Final Report 48 Hours
TOTAL 300 Hours

Marks Breakdown
 Process:

1. Investigation 20
2. Design 10
3. Development 10

40% Total

Karl Austin
 - 57 -

Deliverable:

1. Quality of description 15
2. Quality of deliverable 15

30% Total

Karl Austin
 - 58 -

Appendix B – User Interface Screen-shots

Figure 4: CPanel End User GUI

Karl Austin
 - 59 -

Figure 5: HSphere End User GUI

Karl Austin
 - 60 -

Figure 6: HSphere Skin Colour Chooser

Karl Austin
 - 61 -

Appendix C – General System Data

Domain Configuration Data

<website id="10001" ip="62.149.37.18" port="80" server="62.149.37.18"
suexec="off">
 <user>karl</user>
 <group>karl</group>
 <root>/meta/data/web/karl/test.karlaustin.com</root>
 <domain prefix="*">
 <primary>test.karlaustin.com</primary>
 <alias>messingham.org</alias>
 </domain>
 <log>
 <format name="common">%h %l %u %t \"%r\" %>s %b</format>

<format name="referer">%{Referer}i -> %U</format>
<format name="agent">%{User-agent}i</format>

 <error status="on">|/usr/bin/cronolog /meta/data/web/karl/logs/test.karlaustin.com/error.log.%Y%m%d</error>
<custom format="combined">|/usr/bin/cronolog /meta/da

</log>
 <errorpage>
 <page code="404">http://test.karlaustin.com/404.php</page>

</errorpage>
 <gzip status="on"/>
 <cgi status="on">
 <extension>.cgi</extension>
 <extension>.pl</extension>
 </cgi>
 <php status="on" restrictions="level1">
 <extension>.php</extension>
 <extension>.php3</extension>
 <extension>.php4</extension>
 <extension>.phtml</extension>
 </php>
 <ssi status="on">
 <extension>.shtml</extension>
 <extension>.shtm</extension>
 </ssi>
 <index type="fancy">
 <file>.??*</file>
 <file>*~</file>
 <file>*#</file>
 <file>HEADER*</file>
 <file>README*</file>
 <file>RCS</file>
 <file>CVS</file>
 <file>*,v</file>
 <file>*,t</file>
 </index>
</website>

Karl Austin
 - 62 -

DNS Configuration Data

<domain name="karlaustin.com" ttl="14400" ip="62.149.37.15"
reverse="yes" wildcard="yes" tld="com" sld="karlaustin">
 <serial>2002111317</serial>
 <refresh>10800</refresh>
 <retry>3600</retry>
 <expire>604800</expire>
 <ttl>86400</ttl>
 <soa>rogue1.kdawebservices.com</soa>
 <hostmaster>hostmaster.karlaustin.net</hostmaster>
 <mail priority="10" ttl="14400">mail.karlaustin.com</mail>
 <mail priority="20" ttl="14400">mail2.karlaustin.com</mail>
 <nameserver ttl="14400" type="primary"
ip="62.149.37.18">rogue1.kdawebservices.com</nameserver>
 <nameserver ttl="14400" type="secondary"
ip="62.149.37.18">rogue2.kdawebservices.com</nameserver>
 <cname ttl="14400" name="kda">www.kdawebservices.com</cname>
 <cname ttl="14400" name="home">karl.gotdns.com</cname>
 <subdomain name="uni" ttl="14400" ip="62.149.37.15" reverse="no"
wildcard="yes">
 <mail priority="10" ttl="14400">mail.karlaustin.com</mail>
 <mail priority="20" ttl="14400">mail2.karlaustin.com</mail>
 <cname ttl="14400" name="shu">www.shu.ac.uk</cname>
 </subdomain>
</domain>

Karl Austin
 - 63 -

Appendix D – XSLT + Output

Domain Configuration

Apache - XSL

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>
 <xsl:include href="config.variables.xsl"/>

<xsl:template match="website">
 <xsl:if test="@port!='80'">
<VirtualHost <xsl:value-of select="@ip"/>:<xsl:value-of
select="@port"/>>
 </xsl:if>
 <xsl:if test="@port='80'">
<VirtualHost <xsl:value-of select="@ip"/>>
 </xsl:if>
 <xsl:if test="suexec='on'">
 User <xsl:value-of select="user"/>
 Group <xsl:value-of select="group"/>
 </xsl:if>
 DocumentRoot <xsl:value-of select="root"/>
 <xsl:apply-templates select="domain"/>
 <xsl:apply-templates select="log"/>
 <xsl:apply-templates select="errorpage"/>
 <xsl:if test="cgi/@status='on'">
 <xsl:apply-templates select="cgi"/>
 </xsl:if>
 <xsl:if test="gzip/@status='on'">
 <xsl:apply-templates select="gzip"/>
 </xsl:if>
 <xsl:apply-templates select="index"/>
 <xsl:if test="php/@status='on'">
 <xsl:apply-templates select="php"/>
 </xsl:if>
 <xsl:if test="ssi/@status='on'">
 <xsl:apply-templates select="ssi"/>
 </xsl:if>
 <xsl:if test="ssl/@status='on'">
 <xsl:apply-templates select="ssl"/>
 </xsl:if>
</VirtualHost>
 </xsl:template>

<xsl:template match="domain">
 ServerName <xsl:value-of select="primary"/>
 ServerAlias<xsl:for-each select="alias|primary"><xsl:text>
</xsl:text><xsl:value-of select="../@prefix"/>.<xsl:value-of
select="."/></xsl:for-each>
 </xsl:template>

Karl Austin
 - 64 -

<xsl:template match="log">
 LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-
Agent}i\"" combined
 <xsl:for-each select="format">
 LogFormat "<xsl:value-of select="."/>"<xsl:text>
</xsl:text><xsl:value-of select="@name"/>
 </xsl:for-each>
 <xsl:if test="error/@status='on'">
 ErrorLog "<xsl:value-of select="error"/>"
 </xsl:if>
 <xsl:for-each select="custom">
 CustomLog "<xsl:value-of select="."/>"<xsl:text>
</xsl:text><xsl:value-of select="@format"/>
 </xsl:for-each>
 </xsl:template>

<xsl:template match="errorpage">
 <xsl:if test="count(page) > 0">
 <xsl:for-each select="page">
 ErrorDocument <xsl:value-of select="@code"/><xsl:text>
</xsl:text><xsl:value-of select="."/>
 </xsl:for-each>
 </xsl:if>
 </xsl:template>

<xsl:template match="cgi">
 ScriptAlias /cgi-bin/ <xsl:value-of select="../root"/>
 <xsl:for-each select="extension">
 AddHandler cgi-script <xsl:value-of select="."/>
 </xsl:for-each>
 </xsl:template>

<xsl:template match="gzip">

<xsl:text>
</xsl:text>

</xsl:template>

<xsl:template match="index">
 <xsl:if test="@type='fancy'"> IndexOptions FancyIndexing</xsl:if>
 IndexIgnore<xsl:for-each select="file"><xsl:text>
</xsl:text><xsl:value-of select="."/></xsl:for-each>
 </xsl:template>

<xsl:template match="php">
 <xsl:choose>
 <xsl:when test="@restrictions='level1'">
 php_admin_value open_basedir "<xsl:value-of
select="../root"/>:<xsl:value-of select="$PHP_PATH_PEAR"/>

Karl Austin
 - 65 -

 </xsl:when>
 <xsl:when test="@restrictions='level2'">
 php_admin_value open_basedir "<xsl:value-of
select="../root"/>:<xsl:value-of select="$PHP_PATH_PEAR"/>"
 php_admin_value safe_mode true
 php_admin_value safe_mode_include_dir <xsl:value-of
select="$PHP_PATH_PEAR"/>
 </xsl:when>
 </xsl:choose>
 <xsl:for-each select="extension">
 AddType application/x-httpd-php <xsl:value-of select="."/>
 </xsl:for-each>
 AddType application/x-httpd-php-source .phps
 </xsl:template>

<xsl:template match="ssi">
 <xsl:for-each select="extension">
 AddType text/html <xsl:value-of select="."/>
 AddHandler server-parsed <xsl:value-of select="."/>
 </xsl:for-each>
 </xsl:template>

<xsl:template match="ssl">

<xsl:text>
</xsl:text>

</xsl:template>

</xsl:stylesheet>

Apache - Output

<VirtualHost 62.149.37.18>

DocumentRoot /meta/data/web/karl/test.karlaustin.com
 ServerName test.karlaustin.com
 ServerAlias *.test.karlaustin.com *.messingham.org
 LogFormat \"%h %l %u %t \\\"%r\\\" %>s %b \\\"%{Referer}i\\\"
\\\"%{User-Agent}i\\\"\" combined

LogFormat \"%h %l %u %t \\\"%r\\\" %>s %b\" common
 LogFormat \"%{Referer}i -> %U\" referer
 LogFormat \"%{User-agent}i\" agent
 ErrorLog \"|/usr/bin/cronolog
/meta/data/web/karl/logs/test.karlaustin.com/error.log.%Y%m%d\"

CustomLog \"|/usr/bin/cronolog
/meta/data/web/karl/logs/test.karlaustin.com/access.log.%Y%m%d\"
combined
 ErrorDocument 404 http://test.karlaustin.com/404.php
 ScriptAlias /cgi-bin/ /meta/data/web/karl/test.karlaustin.com

Karl Austin
 - 66 -

 AddHandler cgi-script .cgi
 AddHandler cgi-script .pl
 IndexOptions FancyIndexing
 IndexIgnore .??* *~ *# HEADER* README* RCS CVS *,v *,t
 php_admin_value open_basedir
\"/meta/data/web/karl/test.karlaustin.com:/usr/local/lib/php/
 AddType application/x-httpd-php .php
 AddType application/x-httpd-php .php3
 AddType application/x-httpd-php .php4
 AddType application/x-httpd-php .phtml
 AddType application/x-httpd-php-source .phps

AddType text/html .shtml
 AddHandler server-parsed .shtml
 AddType text/html .shtm
 AddHandler server-parsed .shtm
</VirtualHost>

Karl Austin
 - 67 -

DNS Configuration

Bind – XSL

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="domain">
$ORIGIN <xsl:value-of select="@tld"/>.
<xsl:value-of select="@sld"/><xsl:text> </xsl:text><xsl:value-of
select="@ttl"/> IN A <xsl:value-of select="@ip"/><xsl:text>
 </xsl:text>
 <xsl:value-of select="@ttl"/> IN SOA <xsl:value-of
select="soa"/>.<xsl:text> </xsl:text><xsl:value-of
select="hostmaster"/>. (
 <xsl:value-of select="serial"/><xsl:text> </xsl:text><xsl:value-
of select="refresh"/><xsl:text> </xsl:text><xsl:value-of
select="retry"/><xsl:text> </xsl:text><xsl:value-of
select="expire"/><xsl:text> </xsl:text><xsl:value-of select="ttl"/>)

<xsl:for-each select="nameserver">
 <xsl:text> </xsl:text><xsl:value-of select="@ttl"/> IN NS
 <xsl:value-of select="."/>.<xsl:text>
</xsl:text>
 </xsl:for-each>
 <xsl:for-each select="mail">
<xsl:text> </xsl:text><xsl:value-of select="@ttl"/> IN MX
 <xsl:value-of select="@priority"/><xsl:text>
</xsl:text><xsl:value-of select="."/>.<xsl:text>
</xsl:text>
 </xsl:for-each>
$ORIGIN <xsl:value-of select="@name"/>.
<xsl:if test="@wildcard='yes'">* <xsl:value-of select="@ttl"/> IN
 A <xsl:value-of select="@ip"/><xsl:text>
</xsl:text></xsl:if>

<xsl:for-each select="mail">
 <xsl:if test="../@wildcard='yes'">* <xsl:value-of select="@ttl"/>
 IN MX <xsl:value-of select="@priority"/><xsl:text>
</xsl:text><xsl:value-of select="."/>.
</xsl:if>
 </xsl:for-each>

<xsl:for-each select="cname">
<xsl:value-of select="@name"/><xsl:text> </xsl:text><xsl:value-of
select="@ttl"/> IN CNAME <xsl:value-of select="."/>.<xsl:text>
</xsl:text>
 </xsl:for-each>

<xsl:for-each select="subdomain">
<xsl:value-of select="@name"/><xsl:text> </xsl:text><xsl:value-of
select="@ttl"/> IN A <xsl:value-of select="@ip"/><xsl:text>
</xsl:text>

Karl Austin
 - 68 -

 <xsl:for-each select="mail">
 <xsl:text> </xsl:text><xsl:value-of select="@ttl"/> IN MX
 <xsl:value-of select="@priority"/><xsl:text>
</xsl:text><xsl:value-of select="."/>.<xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:for-each>

<xsl:for-each select="subdomain">
$ORIGIN <xsl:value-of select="@name"/>.<xsl:value-of
select="../@name"/>.<xsl:text>
</xsl:text>
<xsl:if test="../@wildcard='yes'">* <xsl:value-of select="@ttl"/> IN
 A <xsl:value-of select="@ip"/><xsl:text>
</xsl:text></xsl:if>
 <xsl:for-each select="mail">
 <xsl:if test="../@wildcard='yes'">* <xsl:value-of select="@ttl"/>
 IN MX <xsl:value-of select="@priority"/><xsl:text>
</xsl:text><xsl:value-of select="."/>.
</xsl:if>
 </xsl:for-each>
 <xsl:for-each select="cname">
<xsl:value-of select="@name"/><xsl:text> </xsl:text><xsl:value-of
select="@ttl"/> IN CNAME <xsl:value-of select="."/>.<xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:for-each>

</xsl:template>

</xsl:stylesheet>

Bind – Output

$ORIGIN com.
karlaustin 14400 IN A 62.149.37.15
 14400 IN SOA rogue1.kdawebservices.com.
hostmaster.karlaustin.net. (
 2002111317 10800 3600 604800 86400)

14400 IN NS rogue1.kdawebservices.com.
 14400 IN NS rogue2.kdawebservices.com.
 14400 IN MX 10 mail.karlaustin.com.
 14400 IN MX 20 mail2.karlaustin.com.

$ORIGIN karlaustin.com.
* 14400 IN A 62.149.37.15
* 14400 IN MX 10 mail.karlaustin.com.
* 14400 IN MX 20 mail2.karlaustin.com.
kda 14400 IN CNAME www.kdawebservices.com.
home 14400 IN CNAME karl.gotdns.com.
uni 14400 IN A 62.149.37.15
 14400 IN MX 10 mail.karlaustin.com.
 14400 IN MX 20 mail2.karlaustin.com.

$ORIGIN uni.karlaustin.com.

Karl Austin
 - 69 -

* 14400 IN A 62.149.37.15
* 14400 IN MX 10 mail.karlaustin.com.
* 14400 IN MX 20 mail2.karlaustin.com.
shu 14400 IN CNAME www.shu.ac.uk.

DJBDNS – XSL

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="domain">
#START#<xsl:value-of select="@name"/>#
Z<xsl:value-of select="@name"/>:<xsl:value-of
select="soa"/>:<xsl:value-of select="hostmaster"/>:<xsl:value-of
select="serial"/>:<xsl:value-of select="refresh"/>:<xsl:value-of
select="retry"/>:<xsl:value-of select="expire"/>::<xsl:value-of
select="ttl"/>
 <xsl:choose>
 <xsl:when test="@reverse='yes'">
=<xsl:value-of select="@name"/>:<xsl:value-of
select="@ip"/>:<xsl:value-of select="@ttl"/>
 </xsl:when>
 <xsl:otherwise>
+<xsl:value-of select="@name"/>:<xsl:value-of
select="@ip"/>:<xsl:value-of select="@ttl"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test="@wildcard='yes'">
+*.<xsl:value-of select="@name"/>:<xsl:value-of
select="@ip"/>:<xsl:value-of select="@ttl"/>
 </xsl:if>

<xsl:for-each select="nameserver">
.<xsl:value-of select="../@name"/>::<xsl:value-of
select="."/>:<xsl:value-of select="@ttl"/>
 </xsl:for-each>

<xsl:for-each select="mail">
@<xsl:value-of select="../@name"/>::<xsl:value-of
select="."/>:<xsl:value-of select="@priority"/>:<xsl:value-of
select="@ttl"/>
 <xsl:if test="../@wildcard='yes'">
@*.<xsl:value-of select="../@name"/>::<xsl:value-of
select="."/>:<xsl:value-of select="@priority"/>:<xsl:value-of
select="@ttl"/>
 </xsl:if>
 </xsl:for-each>

<xsl:for-each select="cname">
C<xsl:value-of select="@name"/>.<xsl:value-of
select="../@name"/>:<xsl:value-of select="."/>:<xsl:value-of
select="@ttl"/>
 </xsl:for-each>

Karl Austin
 - 70 -

<xsl:for-each select="subdomain">

 <xsl:choose>
 <xsl:when test="@reverse='yes'">
=<xsl:value-of select="@name"/>.<xsl:value-of
select="../@name"/>:<xsl:value-of select="@ip"/>:<xsl:value-of
select="@ttl"/>
 </xsl:when>
 <xsl:otherwise>
+<xsl:value-of select="@name"/>.<xsl:value-of
select="../@name"/>:<xsl:value-of select="@ip"/>:<xsl:value-of
select="@ttl"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test="@wildcard='yes'">
+*.<xsl:value-of select="@name"/>.<xsl:value-of
select="../@name"/>:<xsl:value-of select="@ip"/>:<xsl:value-of
select="@ttl"/>
 </xsl:if>

<xsl:for-each select="mail">
@<xsl:value-of select="../@name"/>.<xsl:value-of
select="../../@name"/>::<xsl:value-of select="."/>:<xsl:value-of
select="@priority"/>:<xsl:value-of select="@ttl"/>
 <xsl:if test="../@wildcard='yes'">
@*.<xsl:value-of select="../@name"/>.<xsl:value-of
select="../../@name"/>::<xsl:value-of select="."/>:<xsl:value-of
select="@priority"/>:<xsl:value-of select="@ttl"/>
 </xsl:if>
 </xsl:for-each>

<xsl:for-each select="cname">
C<xsl:value-of select="@name"/>.<xsl:value-of
select="../@name"/>.<xsl:value-of select="../../@name"/>:<xsl:value-of
select="."/>:<xsl:value-of select="@ttl"/>
 </xsl:for-each>
 </xsl:for-each>
#END#<xsl:value-of select="@name"/>#
 </xsl:template>

</xsl:stylesheet>

DJBDNS – Output

#START#karlaustin.com#
Zkarlaustin.com:rogue1.kdawebservices.com:hostmaster.karlaustin.net:200
2111317:10800:3600:604800::86400
=karlaustin.com:62 .149.37.15:14400
+*.karlaustin.com:62.149.37.15:14400
.karlaustin.com::rogue1.kdawebservices.com:14400
.karlaustin.com::rogue2.kdawebservices.com:14400
@karlaustin.com::mail.karlaustin.com:10:14400
@*.karlaustin.com::mail.karlaustin.com:10:14400
@karlausti n.com::mail2.karlaustin.com:20:14400
@*.karlaustin.com::mail2.karlaustin.com:20:14400
Ckda.karlaustin.com:www.kdawebservices.com:14400
Chome.karlaustin.com:karl.gotdns.com:14400

Karl Austin
 - 71 -

+uni.karlaustin.com:62.149.37.15:14400
+*.uni.karlaustin.com:62.149.37.15:1440 0
@uni.karlaustin.com::mail.karlaustin.com:10:14400
@*.uni.karlaustin.com::mail.karlaustin.com:10:14400
@uni.karlaustin.com::mail2.karlaustin.com:20:14400
@*.uni.karlaustin.com::mail2.karlaustin.com:20:14400
Cshu.uni.karlaustin.com:www.shu.ac.uk:14400
#END#karlaustin.com#

Karl Austin
 - 72 -

Appendix E – Application Code

ApacheWebServer.php

<?php

include_once 'WebServer.php';

class ApacheWebServer extends WebServer
{

function ApacheWebServer()
{

echo "ApacheWebServer
";
parent::_constructor('Apache', 'l

}

function runConfiguration()
{

echo "ApacheWebServer::runConfiguration
";
parent::runConfiguration();
$this

}

}

?>

BindDNSServer.php

<?php

include_once 'DNSServer.php';

class BindDNSSer ver extends DNSServer
{

function BindDNSServer()
{

echo "BindDNSServer
";
parent::_constructor('Bind', 'linux');

}

function runConfiguration()
{

echo "BindDNSServer::runConfiguration
";
parent::runConfiguration();
$th is

}

}

Karl Austin
 - 73 -

?>

DJBDNSServer.php

<?php

include_once 'DNSServer.php';

class DJBDNSServer extends DNSServer
{

function DJBDNSServer()
{

echo "DJBDNSServer
";
parent::_constructor('DJBDNS', 'linux');

}

function runConfiguration()
{

echo "DJBDNSServer::runConfiguration
";
parent::runConfiguration();
$this

}

}

?>

DNSServer.php

<?php

include_once 'Server.php';

class DNSServer extends Server
{

funct ion DNSServer($name)
{

echo "DNSServer
";

}

function _constructor($name)
{

echo "DNSServer::_constructor()
";
parent::_constructor($name);

}

function _parseConfigData($vars = '')
{

Karl Austin
 - 74 -

 echo "DNSServer::_parseConfi
parent::_parseConfigData('DNS', $vars);

}

}

?>

DNSServerFactory.php

<?php

class DNSServerFactory
{

function DNSServerFactory()
{

echo "DNSServerFactory
";

}

function createServer($type)
{

echo "DNSSe
include_once $type.'DNSServer.php';
$class = $type.'DNSServer';
return new $class();

}

}

?>

Server.php

<?php

include_once 'Utilities.php';

class Server
{

var $name = '';
var $files = '';

var $ commands = '';

var $_address = '';
var $_configuration = '';

var $_execOutput = '';
var $_os = '';

var $_replace = '';

var $utils = '';

function Server()

Karl Austin
 - 75 -

 {

echo "Server
";

}

function _constructor($name, $os)
{

echo "
$this
$this
$this

}

function execCommand($command)
{

echo "Server::execCommand()
";
$command = $this
return $this

}

function runConfiguration()
{

$this

}

function setConfiguration($xml)
{

echo "Server::setConfiguration()
";

$this

}

function _ setAddress($address)
{

echo "Server::_setAddress()
";

$this

}

function _setReplace($name, $value)
{

echo "Server::_setReplace()
";

$this

}

function __execCommand($c ommand)
{

echo "Server::__execCommand()
";

$cmd = 'ssh

Karl Austin
 - 76 -

 exec($cmd, $output, $return);
$this
echo "

Command:<pre>$cmd</pre>
Co
return $return;

}

function _parseConfigData($type)
{

echo "Server::_parseConfigData()
";

$xml = join('', file($this
$xsl = join('', file('Configur

$xml = $this
$output = $this

eval($output);
$this
$this

}

function _processFileConfiguration($ command)
{

echo "Server::_processFileConfiguration()
";

while(list($k, $v) = each($command)) {

then '.$wr iterLine.'
fi';

}

}

}

Karl Austin
 - 77 -

?>

ServerFactory.php

<?php

class ServerFactory
{

function ServerFactory()
{

echo "ServerFactory
";

}

function createFactory($type)
{

echo "ServerFactory::createFactory()
";
include_once $type.'ServerFactory.ph
$class = $type.'ServerFactory';
return new $class();

}

}

?>

Utilities.php

<?php

class Utilities
{

function Utilities()
{

echo "Utilities
";
}

function domxml_xmlarray ($branch)
{

echo "Utilities::domxml_xmlarray<b

$object = Array ();
$objptr =& $object;
$branch = $branch

while ($branch) {

Karl Austin
 - 78 -

}
return $object;

}

function getFileContents($file)
{

echo "Utilities::getFileContents
";

return join('', file($file));

}

function replaceVars($text, $vars) {

echo "Utiliti

while(list($var, $value) = @each($vars)) {

}

return $text;

}

function transformXML($xml, $xsl)
{

echo "Utilities::transformXML
";

$args = array('/_xml' => $xml, '/_xsl' => $xsl);
$x = xslt_create();
xslt_set_base($x, 'file://'.dirname(__FILE__).'/');
$output = xslt_process($x, 'arg:/_xml', 'arg:/_xsl', NULL, $args);
if (!$output) {

}
xslt_free($x);
return $output;

}

}

?>

WebServer.php

Karl Austin
 - 79 -

<?php

include_once 'Server.php';

class WebServer extends Server
{

function WebServer()
{

echo "WebServer
";

}

function parseConfigurat ion()
{

echo "WebServer::parseConfiguration
";

$xsl = $this
$ret = $this
parent::_setReplace('configoutput', $ret);
return

}

function runConfiguration()
{

echo "WebServer::runConfiguration
";

$this
$this
parent::runConfiguration();

}

function setConfiguration($xml)
{

echo "WebServer::setCo

$dom = domxml_xmltree($xml);
$details = $this

$server = $details['website'][0]['server'];
$id = $details['website'][0]['id'];

parent::setConfiguration($xml);
parent::_setAddress($
parent::_setReplace('domainid', $id);

}

function _constructor($name, $os)
{

echo "WebServer::_constructor()
";
parent::_constructor($name, $os);

}

function _parseConfigData()
{

Karl Austin
 - 80 -

 echo "WebServer::_parseConfigD
parent::_parseConfigData('Web');

}

}

?>

WebserverFactory.php

<?php

class WebServerFactory
{

function WebServerFactory()
{

echo "WebServerFactory
";

}

function createServer($type)
{

echo "WebServerFactory::createServer()
";
include_once $type.'WebServer.php';
$class = $type.'WebServer';
return new $class();

}

}
?>

